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Abstract

In this paper we introduce a new R package, geosample, for constructing geostatistical

sampling designs. The new package implements classes of adaptive and non-adaptive

probability-based sampling designs. Non-adaptive sampling designs choose all sampling

locations in a single wave without reference to existing data. Adaptive sampling designs

use information from existing data to inform a choice of additional sample locations at

each sampling wave. We illustrate the use of the package through the construction of both

adaptive and non-adaptive designs, using a simulated data-set and malaria prevalence data

from southern Malawi.
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1. Introduction

Geostatistics is primarily concerned with the investigation of an unobserved spatial phenomenon

S “ tSpxq : x P D Ă IR2u, where D is a geographical region of interest, using data in the form

of measurements yi at locations xi P D. Typically, each yi can be regarded as a noisy version

of Spxiq. We write X “ tx1, . . . , xnu and call X the sampling design. This paper introduces

a new R (R Core Team 2017) package, geosample, for geostatistical sampling designs. The

work was motivated by applications to disease prevalence mapping, where the main focus of

scientific interest is on deciding which households to sample in each round of sampling so as

to optimise the precision of the resulting sequence of area-wide prevalence maps.

Geostatistical analysis can address either or both of two broad objectives: estimation of the

parameters that define a stochastic model for the unobserved process S and the observed data
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tpyi, xiq : i “ 1, . . . , nu; and prediction of the unobserved realisation of Spxq, or particular

characteristics of this realisation.

In practice, geostatistical sampling designs that are efficient for parameter estimation are

generally inefficient for spatial prediction, and vice-versa (Diggle and Ribeiro 2007; Müller 2007).

Additionally, parameter values are usually unknown in practice, hence design for prediction

involves a compromise. Furthermore, the diversity of potential predictive targets requires

design strategies to be context-specific (Chipeta, Terlouw, Phiri, and Diggle 2016a). Another

important distinction is between non-adaptive sampling designs that must be completely

specified prior to data-collection, and adaptive designs, for which data are collected over a

period of time and later sampling locations can depend on data collected from earlier locations

(Chipeta et al. 2016a; Chipeta, Terlouw, Phiri, and Diggle 2016b).

In this paper, we describe the implementation of geostatistical sampling algorithms for

constructing adaptive and non-adaptive classes of designs as described in Chipeta et al.

(2016a) and Chipeta et al. (2016b), respectively. The geosample package includes functionality

to determine sampling locations within a set of spatial constraints and information from

existing sampling locations. The package makes use of functions from other R packages,

including sp, splancs, rgeos and pdist, which support data manipulation and computation.

In order to determine new sampling locations in the case of adaptive sampling, geosample

requires predictions to be made at all unobserved (potential sampling) locations. These can be

obtained from existing packages including PrevMap, geoR, lgcp and spatstat that can carry

out predictive inference.

The paper is structured as follows. In Section 2 we give the theoretical background within

which adaptive and non-adaptive designs have been developed. Section 2.1 describes a class of

non-adaptive designs, including random and inhibitory sampling (with or without close pairs).

Section 2.2 describes a class of adaptive designs. Section 3 gives an overview of the package

by way of a walk-through of a simulated dataset, and an application to malaria prevalence

mapping in southern Malawi. Section 4 is a concluding discussion.

2. Methodological framework

Geostatistical design problems can be classified according to whether the primary objective is

parameter estimation or spatial prediction and, in the latter case, whether model parameters

are assumed known or unknown. Methods in the geosample package focus on designs for

efficient prediction when model parameters are unknown.

2.1. Non-adaptive designs
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We first consider non-adaptive geostatistical designs. These offer standard ways of collecting

and analysing geostatistical data in which sampling locations are fixed in advance of any data

collection. Two standard non-adaptive designs are a completely random design, in which the

sample locations xi form an independent random sample from the uniform distribution on

D, and a completely regular design in which the xi form a regular square or, less commonly,

triangular lattice, ensuring an even coverage over the study region. Diggle and Lophaven

(2006) implemented lattice-based designs and Chipeta et al. (2016b) implemented inhibit-

ory geostatistical designs in which sampled locations exhibit a degree of spatial regularity,

intermediate between completely random and lattice designs.

Completely random designs

A completely randomised design has locations xi; i “ 1, . . . , n, chosen independently, each with

a uniform distribution over D. This ensures that the design is stochastically independent of

the underlying spatial phenomenon of interest Spxq, which is a requirement for the validity of

standard geostatistical methods (Diggle, Menezes, and Su 2010). However, the resulting uneven

coverage of D has a negative impact on spatial prediction. Compeletely randomised design

strategies are well established in classical survey sampling (Cochran 1977). An undesirable

feature of these designs when the goal is prediction is their tendency to leave large swaths

of unsampled areas (Müller 2007). Nevertheless, previous research studies have shown that

this class of designs is efficient for estimation of covariance structure. See, for example, Russo

(1984); Warrick and Myers (1987); Müller and Zimmerman (1999); Lark (2002).

In the geosample package, a completely randomised design X is implemented by the function

random.sample. The function takes a sample of the specified number of locations n, either

from N potential sampling locations without replacement, or as an independent sample from

a designated region D.

Inhibitory designs

In some geostatistical analysis problems, the covariance structure is assumed to be known, and

the goal is spatial prediction. Previous research has shown that classes of completely regular

designs are then more efficient than completely random designs. See, for example, McBratney,

Webster, and Burgess (1981); McBratney and Webster (1981); Yfantis, Flatman, and Behar

(1987); Ritter (1996). In practice, the covariance structure is usually unknown and needs to

be estimated. Usually, one has to use the same data for estimation of covariance parameters

and for spatial prediction, and efficient prediction requires good estimates of the second order

characteristics (Müller, Pronzato, Rendas, and Waldl 2015). Designs that offer a compromise

between the two contrasting aims are therefore attractive. One such example is the following

class of inhibitory designs.
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An inhibitory design has n random locations in D with the constraint that no two locations

are separated by a distance of less than a specified value δ. Inhibitory designs adhere to the

established principles of random sampling theory while guaranteeing some degree of spatial

regularity. This construction has also been suggested as a model for naturally occuring patterns

of points that exhibit spatial regularity (Matérn 1986) (originally published in 1960). All

design points X that meet the inhibitory constraint are equally likely to be picked. Chipeta

et al. (2016b) developed and implemented simple inhibitory (SI) and inhibitory with close

pairs (ICP) design strategies. In the latter, n ´ k simple inhibitory sample locations are

augmented by k locations each positioned close to one of the randomly selected n ´ k locations

in the simple inhibitory design, uniformly distributed within a disk of radius ζ. Inclusion of

close pairs of sampled locations helps to identify a suitable parametric family for the specified

correlation structure of a geostatistical dataset.

Inhibitory design construction can be applied whether or not the potential sampling locations

are confined to a finite set of points. In the geosample package, inhibitory designs for a finite

set of points are implemented by the function discrete.inhibit.sample, and for points in

a continuum, by the function contin.inhibit.sample. In each of these implementations,

geosample package can generate simple inhibitory or inhibitory with close pair samples.

An inhibitory design, SIpn, δq, is implemented as follows. Choose a packing density for the

design, i.e. the proportion of D covered by n non-overlapping disks of diameter δ, given by

ρ “ pnπδq{p4|D|q. An SI(n, δ) design on D is then generated by the following steps.

• Step 1: Draw a sample of locations xi : i “ 1, . . . , n completely at random in D;

• Step 2: Set i “ 1;

• Step 3: Calculate the minimum, dmin, of the distances from xi to all other xj in the

current sample;

• Step 4: If dmin ě δ, increase i by 1 and return to step 3 if i ď n, otherwise stop;

• Step 5: If dmin ă δ, replace xi by a new location drawn completely at random in D and

return to step 4.

For efficient parameter estimation, the simple inhibitory sampling scheme can be augmented

by pairs of closely spaced points. The algorithm then requires the following additional steps.

Let k be the required number of close pairs. Choose a value ζ such that a close pair of

points will be separated by a distance of at most ζ. For a total of n points, an ICPpn, k, δ, ζq

design consists of an SI(n ´ k, δ) design with inhibition distance δ augmented by k locations

each positioned relative to one of the randomly selected n ´ k locations in the SI design

according to the uniform distribution over a disk of radius ζ. The following steps generate the

ICPpn, k, δ, ζq design.
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• Step 1: Construct a simple inhibitory design SIpn ´ k, δq;

• Step 2: Sample k from x1, . . . , xn´k without replacement and call this set x˚
j , j “ 1, . . . , k;

• Step 3: For j “ 1, . . . , k, xn´k`j is uniformly distributed on the disk with center x˚
j and

radius ζ.

2.2. Adaptive designs

We now focus on a class of adaptive geostatistical designs, in which sampled locations are

defined in batches at a sequence of times, and the locations in any batch use data from earlier

batches to optimise data collection towards the analysis objective. The adaptive sampling

design criterion ensures that data are collected only from locations that will deliver useful

additional information (Chipeta et al. 2016a).

An adaptive design strategy takes the following approach.

• Step 1: Specify the finite set, X ˚ say, of n˚ potential sampling locations xi P D. If all

points x P D are eligible, we approximate this by specifying X ˚ as a finely spaced grid

to cover D;

• Step 2: Use a non-adaptive design to choose an initial set of sample locations, X0 “

txi P D : i “ 1, . . . , n0u;

• Step 3: Use the corresponding data Y0 to estimate the parameters of an assumed

geostatistical model;

• Step 4: Specify a selection criterion for the addition of one or more new sample locations

to form an enlarged set X0 Y X1;

• Step 5: Repeat steps 3 and 4 with augmented data Y1 at the points in X1;

• Step 6: Continue until the required number of points has been sampled, a required

performance criterion has been achieved or no more potential sampling points are

available.

In step 2, any initial design can be supplied, but our general recommendation would be to use

an inhibitory plus close pairs design.

Adaptive sampling is implemented by adaptive.sample function. The function implements

singleton adaptive sampling, in which individual locations are chosen sequentially, allowing

xk`1 to depend on data obtained at all earlier locations x1, . . . , xk, and batch adaptive sampling,

where sets of b ą 1 locations are chosen, with each set pxk`1, . . . , xk`bq, dependent on data

from all earlier locations x1, . . . , xk.
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2.3. Selection criteria

The adaptive.sample function offers a choice of either predictive variance (PV) or exceedance

probabilities (EP) selection criteria in step 4 above. For the predictive target T “ Spxq at a

particular location x, given an initial set of sampling locations X0 “ px1, . . . , xn0
q the available

set of additional sampling locations is A0 “ X ˚zX0.

In the PV selection criterion, any x P A0 has the predictive variance, PV pxq “ VarpT |Y0q

(Diggle and Ribeiro 2007). The algorithm then chooses the locations x˚ with the largest values

of PV pxq, either singly or in batches (Chipeta et al. 2016a). For the EP selection criterion,

each x P A0 has exceedance probability, EP pxq “ P rtT pxq ą t|y0u ´ 0.5s for a given threshold

t (Giorgi and Diggle 2017). The algorithm then chooses the locations x˚ “ arg minA0
EP pxq,

either singly or in batches. When locations are chosen in batches, a minimum distance penalty

is imposed for both PV and EP criteria. This ensures that no two sampling locations are

separated by a distance of less than δ, to avoid sampling from multiple locations x at which

the corresponding Spxq are highly correlated.

2.4. Perfomance criteria

For design strategies implemented in geosample, we focus on a predictive target T “ T pSq,

where the property of S is of primary interest. We use a generic measure of the predictive

accuracy of a design X , the mean square error,

MSEpT̂ q “ ErpT ´ T̂ q2s (1)

where T̂ “ ErT |Y ; X s is the minimum mean square error predictor of T for any given design

X in D.

3. Introduction to the geosample package

In this section, we present an introduction to the geosample package functionality by means

of a walk-through of some geostatistical sampling examples. The geosample package provides

compatibility with common spatial packages including sp and sf. In Section 3.1 we give a

unifying workflow for using geosample with other R packages, such as PrevMap, geoR and

other spatial statistics packages, for generating geostatistical samples, estimating parameters

and predicting the phenomenon of interest in unobserved locations x˚. Section 3.2 outlines

sampling and inference from a simulated dataset using classes of design discussed earlier.

Section 3.3 reports an application of the geosample package functionality to adaptive sampling

for malaria prevalence mapping in Majete, southern Malawi.
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3.1. Geostatistical sampling workflow

The geosample package focuses on geostatistical sampling designs that compromise between

designing for efficient parameter estimation and designing for efficient prediction given the

values of relevant model parameters. The workflow relies on functionality and outputs from

other R packages as determined by the user, mainly to do with parameter estimation and

spatial predictions. Figure 1 is a diagrammatic representation of the workflow.

The first stage involves deciding on and implementing the initial sampling design, dependent

on the objective(s) of the geostatistical analysis problem at hand. The initial design is a

non-adaptive design, which can be any of the designs outlined in Section 2.1. Once data

have been collected from sample locations in the chosen design, the second stage is to analyse

the data in order to estimate model parameters, within an assumed geostatistical model.

Parameter estimation can take several forms including guess work, also known as curve fitting

“by eye”, variogram fitting or formal estimation using methods such as maximum likelihood

estimation. See Mardia and Marshall (1984); Christensen (2004); Diggle and Ribeiro (2007)

for details. In our walk through examples, we assume a linear Gaussian model of the form:

Yi “ dpxiq
1β ` Spxiq ` Zi, i “ 1, . . . , n (2)

where the Zi are mutually independent Np0, τ2q random variables and Spxq is a stationary

Gaussian process, with mean µ, variance σ2 “ VarpSpxqq and correlation function ρpuq “

CorrtSpxq, Spx1qu, where u “ ||x ´ x1|| and || ¨ || denotes Euclidean distance. The dpxiq are

spatially referenced covariates. In all the examples, we work with the Matérn correlation

function (Matérn 1986; Diggle and Ribeiro 2007):

ρpu, φ, κq “ t2κ´1Γpκqu´1pu{φqκκκpu{φq. (3)

The third stage is to predict T ˚ “ pT pxpn`1qq, . . . , T pxpn`qqqqJ at q additional locations where

measurements have not been taken. Estimates of all model parameters are plugged into

the prediction equation as if they were the true parameter values, in a process referred to

as “plug-in prediction”. Inferences can be made, depending on the context, for a range of

predictive targets, for example: a single value Spx0q; the value of Sp¨q over an area of interest

or subsets thereof; the minimum or maximum value of Spxq; or the probability that Spxq is

below or above a particular threshold. This requires all relevant explanatory variables to be

available at the prediction locations.

The fourth stage is the implementation of adaptive sampling if there is need for additional

samples to achieve the required predictive accuracy. Required inputs include predictions at
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all unobserved (potential sampling) locations, a sample selection criterion and any spatial

constraints. Several sampling rounds can be implemented, allowing for spatial constraints

to change at each cycle. This process involves repeated estimation and prediction stages.

Adaptive sampling stops when the specified stopping condition(s) have been achieved, see

Section 2.2 for details.

Figure 1: Geostatistical sampling workflow within geosample package. D1: user decision
for initial design. D2: user decision whether to sample additional samples, in which case
adaptive sample will be generated. D3: user decision to update sampling constraints. D4:
user decision to stop further sampling. See text for detailed explanation.

3.2. Simulation example

In this example, we generated a binomial dataset available in the package as sim.data. We

generated a realisation of Gaussian process Spxq on a 35 by 35 grid covering the unit square,

giving a total of n˚ “ 1225 potential sampling locations. We specified Spxq to have expectation

µ = 0, variance σ2 = 1 and Matérn correlation function (3), with φ = 0.15 and κ = 1.5, and

no measurement error, i.e. τ2 = 0. Binomial observations, with 8 trials at each grid point and
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probabilities given by the anti-logit of the simulated values of the Gaussian process, constitute

the response variable y. For the initial sample, we use a simple inhibitory design to sample n0

= 30 locations with δ = 0.04. The results are shown in Figure 2.

library("geosample")

library("viridisLite")

data(sim.data)

head(sim.data, n = 6L, addrownums = TRUE)

## Simple feature collection with 6 features and 3 fields

## geometry type: POINT

## dimension: XY

## bbox: xmin: 0 ymin: 0 xmax: 0.1471 ymax: 0

## epsg (SRID): NA

## proj4string: NA

## data y units.m geometry

## 1 1.042 4 8 POINT (0 0)

## 2 1.126 5 8 POINT (0.02941 0)

## 3 1.183 6 8 POINT (0.05882 0)

## 4 1.185 7 8 POINT (0.08824 0)

## 5 1.131 5 8 POINT (0.1176 0)

## 6 1.088 5 8 POINT (0.1471 0)

set.seed(123)

my.sample <- discrete.inhibit.sample(obj = sim.data, size = 30,

delta = 0.04, plotit = TRUE)

The first argument in the function discrete.inhibit.sample specifies a spatial object i.e.

sf or sp object in which each row contains a spatial location and any associated covariates.

Sample size is specified via the argument size. Inhibition distance is set via delta. Sampled

locations are plotted by default, whilst setting the argument plotit to FALSE turns the

plotting off.

For both model parameter estimation and spatial predictions, we use functions from the

PrevMap package (Giorgi and Diggle 2017). The binomial.logistic.MCML function fits a

geostatistical binomial logistic model with the following inputs: random variables Yi of positive

counts, binomial denominators mi, explanatory variables di P IRp and associated sampling

locations xi : i “ 1, . . . , n in the study region. Conditionally on a zero-mean Gaussian process
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Figure 2: Simple inhibitory (discrete) design with δ = 0.04 and n0 = 30.
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Spxq and mutually independent zero-mean Gaussian variables Zi, each Yi follows a binomial

distribution with mean EtYi|Spxiq, Ziu “ mipi and

log

"

p

1 ´ p

*

“ dpxiq
1β ` Spxiq ` Zi. (4)

library("PrevMap")

knots <- as.matrix(expand.grid(seq(-0.2, 1.2, length = 15),

seq(-0.2, 1.2, length = 15)))

mcmc.ctr <- control.mcmc.MCML(n.sim = 5500, burnin=500, thin = 5)

dat <- my.sample[[4]]

par0 <- c(0.001, 1, 0.4)

model.fit <-

binomial.logistic.MCML(y ~ 1, units.m = ~units.m, data = dat, par0 = par0,

coords=~st_coordinates(dat), fixed.rel.nugget = 0,

start.cov.pars = par0[3], control.mcmc = mcmc.ctr,

low.rank = TRUE, knots = knots, kappa = 1.5,

method = "BFGS", messages = FALSE,

plot.correlogram = FALSE)

summary(model.fit, log.cov.pars = FALSE)

## Geostatistical binomial model

## (low-rank approximation)

## Call:

## binomial.logistic.MCML(formula = y ~ 1, units.m = ~units.m, coords = ~st_coordinates(dat),

## data = dat, par0 = par0, control.mcmc = mcmc.ctr, kappa = 1.5,

## fixed.rel.nugget = 0, start.cov.pars = par0[3], method = "BFGS",

## low.rank = TRUE, knots = knots, messages = FALSE, plot.correlogram = FALSE)

##

## Estimate StdErr z.value p.value

## (Intercept) 0.216 0.241 0.9 0.37

##

## Objective function: 1.433

##

## Matern kernel parameters (kappa=1.5)

## Adjustment factorfor sigma^2: 8.624

## Estimate StdErr

## sigma^2 1.053 0.14



12 geosample: an R Package for Geostatistical Sampling Designs

## phi 0.617 0.32

##

## Legend:

## sigma^2 = variance of the Gaussian process

## phi = scale of the spatial correlation

We use the resulting binomial fit to generate spatial predictions of prevalence at each of the

1225 sampling locations using the spatial.pred.binomial.MCML function.

model.pred <-

spatial.pred.binomial.MCML(object = model.fit, type = "joint",

control.mcmc = mcmc.ctr,thresholds = 0.45,

grid.pred = st_coordinates(sim.data),

scale.predictions = "prevalence",

scale.thresholds ="prevalence",

standard.errors = TRUE, messages = FALSE,

plot.correlogram = FALSE)

Several results can be summarised and visualised from the prediction results, including

predictions and exceedance probabilities at each of the prediction locations.

par(mfrow = c(1,2))

plot(model.pred, type = "prevalence", col = viridis(256, direction = -1),

summary = "predictions", zlim = c(0, 1))

contour(model.pred, type="prevalence", summary="predictions", zlim = c(0, 1),

levels = seq(0.1,0.9, 0.1), add = TRUE)

plot(model.pred,summary="exceedance.prob",zlim=c(0,1),

col = viridis(256, direction = -1))

contour(model.pred, summary = "exceedance.prob",zlim = c(0, 1),

levels = seq(0.1,0.3, 0.1), add = TRUE)

par(mfrow = c(1,1))

To implement a minimum distance batch adaptive sampling of 10 additional locations, using

the prediction variance selection criterion, we extract prediction variances at all potential

locations. We set the minimum sampling distance to be δ = 0.1.

obj.1 <- as.data.frame(cbind(model.pred$grid,

c(model.pred$prevalence$standard.errors)^2))

colnames(obj.1) <- c("coord1", "coord2", "pred.var")
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Figure 3: Spatial prediction visualisation. Spatial predictions on the LHS and exceedance
probabilities P px; 0.45q = P (prev > 0.45 at location x) on the RHS.
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obj.1 <- sf::st_as_sf(obj.1, coords = c('coord1', 'coord2'))

adapt.sample.pv <-

adaptive.sample(obj1 = obj.1, obj2 = dat,

pred.var.col = 1,criterion = "predvar",

delta = 0.1, batch.size = 10, poly = NULL,

plotit = TRUE)

The argument obj1 specifies a spatial object that contains potential sampling locations and

their associated prediction variance and/or exceedance probabilities. Locations from the existing

(initial) design are specified via argument obj2, which is also a spatial object such as sf or

sp object. The batch.size determines the number of additional locations to be sampled per

sampling round. A batch size equal to 1 will implement a singleton adaptive design. The

function has a default behaviour to plot sample locations. These are shown in Figure 4.

Note that similar/comparable parameter estimation and spatial prediction results can be

obtained from several other R packages. The choice of which package to use depends on

a number of factors including, methodological implementation in the packages, analysis

objective(s) and ease of use by the user. These packages include geoRglm, geostatsp, geoBayes,

spBayes, spGLM, spaMM, spMvGLM and geoCount for count data. See https://cran.

r-project.org/web/views/Spatial.html for a comprehensive list.

3.3. Case study: malaria prevalence in Majete, southern Malawi.

We now illustrate the use of the geosample package to construct a survey sample for malaria

prevalence mapping in an area surrounding Majete Wildlife Reserve (MWR) within Chikwawa

district, southern Malawi. The MWR is situated in the lower Shire valley at the edge of

the African Rift Valley (15.97˝S; 34.76˝E). The whole perimeter is home to a population of

around 100,000 (at the time of writing). Figure 5 shows the households of the study area. The

perimeter is subdivided into 19 community-based organizations (CBOs). In the study, three

sets of these CBOs (CBOs - 1 & 2, CBOs -15 & 16, and CBOs - 6, 7 & 8) define focal areas A,

B, and C, respectively. See Chipeta et al. (2016a,b); Kabaghe, Chipeta, McCann, Phiri, van

Vugt, Takken, Diggle, and Terlouw (2017); McCann, van den Berg, Diggle, van Vugt, Terlouw,

Phiri, Di Pasquale, Maire, Gowelo, Mburu, Kabaghe, Mzilahowa, Chipeta, and Takken (2017)

for more details.

The first stage in the geostatistical design was a complete enumeration of households in the

study region, including their geo-location collected using Global Positioning System devices on

a Samsung Galaxy Tab 3 running the Android 4.1 Jellybean operating system. We consider

focal area A of the study area and use a simple inhibitory design to sample 60 households in
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the initial sampling locations. Red dots (na = 10) are adaptive sampling locations added after
analysing data from the initial design.
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Figure 5: Majete Wildlife Reserve (brown) is surrounded by 19 CBOs (grey and green)
comprising the Majete perimeter. Three focal areas (green), labelled as A, B, and C mark the
communities selected for malaria indicator surveys. The rest of the CBOs (grey) are outside
the project’s catchment area. Reprinted from Kabaghe et al. (2017).

the initial sample. Data from these households are then analysed using the binomial logistic

model (4), and predictive analysis is carried out to map malaria prevalence.

All potential (available) household locations are shown in Figure 6.

data("border")

data("majete")

plot(st_geometry(majete), pch = 19, cex = 0.5,

xlim=range(st_coordinates(border)[,1]),

ylim=range(st_coordinates(border)[,2]),

axes = TRUE, xlab="longitude", ylab="latitude")

plot(border, lwd = 2, add= TRUE)

The sampled households (black dots) are shown in Figure 7.

set.seed(1234)

init.sample <-

discrete.inhibit.sample(obj = majete, size = 60, delta = 0.4,
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Figure 6: All potential household sampling locations in Majete.
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k = 0, delta.fix = FALSE,

poly = border, plotit = TRUE)

We extract data from the sampled households, and fit the binomial logistic model (4) to the

data. The binomial logistic estimates are then used for prediction at unobserved households.

See Giorgi and Diggle (2017) for details.

mrdt <- init.sample[[4]]

glmfit <- glm(rdt~1, data = mrdt,

family = binomial(link = logit))

ID.coords <- create.ID.coords(data=as.data.frame(mrdt),

coords=~st_coordinates(mrdt))

mrdt$units.m <- rep(1,nrow(mrdt))

par0 <- c(coef(glmfit),cov.pars=c(0.93171,3.9549))

control.mcmc <- control.mcmc.MCML(n.sim = 5500,burnin=500,thin=5)

model.fit <-

binomial.logistic.MCML(rdt~1, units.m=~units.m,par0=par0,

coords=~st_coordinates(mrdt),data=mrdt,

ID.coords = ID.coords, kappa=0.5,

control.mcmc=control.mcmc, method="BFGS",

fixed.rel.nugget = 0, start.cov.pars=c(par0[3]),

messages = FALSE, plot.correlogram = FALSE)

## Fixed relative variance of the nugget effect: 0

summary(model.fit, log.cov.pars = FALSE)

## Geostatistical binomial model

## Call:

## binomial.logistic.MCML(formula = rdt ~ 1, units.m = ~units.m,

## coords = ~st_coordinates(mrdt), data = mrdt, ID.coords = ID.coords,

## par0 = par0, control.mcmc = control.mcmc, kappa = 0.5, fixed.rel.nugget = 0,

## start.cov.pars = c(par0[3]), method = "BFGS", messages = FALSE,

## plot.correlogram = FALSE)

##

## Estimate StdErr z.value p.value

## (Intercept) -2.13 0.35 -6.1 1e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 7: Simple inhibitory (discrete) design with δ = 400 meters and n0 = 60 households
(black dots) in Majete.



20 geosample: an R Package for Geostatistical Sampling Designs

##

## Objective function: 0.5935

##

## Covariance parameters Matern function

## (fixed relative variance tau^2/sigma^2= 0)

## Estimate StdErr

## sigma^2 0.949 0.76

## phi 3.912 0.21

##

## Legend:

## sigma^2 = variance of the Gaussian process

## phi = scale of the spatial correlation

We now carry out spatial predictions over all unobserved households, with the model parameters

fixed at the MCML estimates, and summarise the predictive distribution of prevalence at each

location through its mean, standard deviation and probability that the estimated prevalence

is above 15 %. Using these results, an adaptive sample of 40 additional households is taken.

The results are shown in Figure 8.

avail.locs <- majete[!(majete$geometry) %in% (mrdt$geometry),]

model.pred <-

spatial.pred.binomial.MCML(model.fit,

grid.pred=unique(st_coordinates(avail.locs)),

control.mcmc=control.mcmc, type = "marginal",

scale.predictions = "prevalence",

standard.errors = TRUE, thresholds = 0.15,

scale.thresholds = "prevalence",

messages = FALSE, plot.correlogram = FALSE)

pred.vars <- as.data.frame(cbind(model.pred$grid,

c(model.pred$prevalence$standard.errors)^2))

colnames(pred.vars)<- c("coord1", "coord2", "pred.var")

pred.vars <- sf::st_as_sf(pred.vars, coords = c('coord1', 'coord2'))

st_crs(pred.vars) <- st_crs(mrdt)

adapt.sample.pv <-

adaptive.sample(obj1 = pred.vars, obj2 = mrdt,

pred.var.col = 1, criterion = "predvar",
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delta = 0.15, batch.size = 40,

poly = border, plotit = TRUE)

Model parameter estimates are updated using the augmented data from the adaptive sampling.

mrdt <- majete[(majete$geometry) %in%

(adapt.sample.pv$sample.locs$curr.sample$geometry),]

ID.coords <- create.ID.coords(data=as.data.frame(mrdt),

coords=~st_coordinates(mrdt))

mrdt$units.m <- rep(1,nrow(mrdt))

par0 <- c(coef(model.fit))

model.fit <-

binomial.logistic.MCML(rdt~1, units.m=~units.m,par0=par0,

coords=~st_coordinates(mrdt),data=mrdt,

ID.coords = ID.coords,

control.mcmc=control.mcmc, kappa=0.5,

fixed.rel.nugget = 0,

start.cov.pars=c(par0[3]),

method="BFGS", messages = FALSE,

plot.correlogram = FALSE)

## Fixed relative variance of the nugget effect: 0

summary(model.fit, log.cov.pars = FALSE)

## Geostatistical binomial model

## Call:

## binomial.logistic.MCML(formula = rdt ~ 1, units.m = ~units.m,

## coords = ~st_coordinates(mrdt), data = mrdt, ID.coords = ID.coords,

## par0 = par0, control.mcmc = control.mcmc, kappa = 0.5, fixed.rel.nugget = 0,

## start.cov.pars = c(par0[3]), method = "BFGS", messages = FALSE,

## plot.correlogram = FALSE)

##

## Estimate StdErr z.value p.value

## (Intercept) -2.131 0.415 -5.14 2.8e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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Figure 8: Adaptive sampling design with δ = 150 meters and b “ 40, Blue dots (n0 = 60)
are the initial sampling households. Red dots (na = 40) are adaptive samples added after
analysing data from the initial design.
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## Objective function: 0.4206

##

## Covariance parameters Matern function

## (fixed relative variance tau^2/sigma^2= 0)

## Estimate StdErr

## sigma^2 1.20 0.77

## phi 3.68 0.25

##

## Legend:

## sigma^2 = variance of the Gaussian process

## phi = scale of the spatial correlation

We now carry out spatial predictions over a 5 metre by 5 metre regular grid, with model

parameters fixed at the MCML estimates from the accrued data, and summarise the predictive

distribution of prevalence in each grid cell through its mean, standard deviation and probability

that the estimated prevalence is above 15 %.

library(splancs)

##

## Spatial Point Pattern Analysis Code in S-Plus

##

## Version 2 - Spatial and Space-Time analysis

##

## Attaching package: ’splancs’

## The following object is masked from ’package:raster’:

##

## zoom

pred.poly <- as_Spatial(border)@polygons[[1]]@Polygons[[1]]@coords

grid.pred <- gridpts(pred.poly, xs=0.05, ys=0.05)

model.pred <-

spatial.pred.binomial.MCML(model.fit, grid.pred=grid.pred,

control.mcmc=control.mcmc,

type = "marginal",

scale.predictions = "prevalence",

standard.errors = TRUE, thresholds = 0.15,

scale.thresholds = "prevalence",
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messages = FALSE, plot.correlogram = FALSE)

##1. Prevalence predictions

prevpred <-

rasterFromXYZ(cbind(model.pred$grid[,1],

model.pred$grid[,2],

model.pred$prevalence$predictions))

prevpred <- raster::disaggregate(prevpred, fact = 10,

method = "bilinear")

##2. Std error

stderror <-

rasterFromXYZ(cbind(model.pred$grid[,1],

model.pred$grid[,2],

model.pred$prevalence$standard.errors))

stderror <- raster::disaggregate(stderror, fact = 10,

method = "bilinear")

##3. Exceedance probablities

exceed <-

rasterFromXYZ(cbind(model.pred$grid[,1],

model.pred$grid[,2],

model.pred$exceedance.prob))

exceed <- raster::disaggregate(exceed, fact = 10,

method = "bilinear")

par(mfrow = c(2,2))

plot(prevpred, main = "(a)", col = viridis(256, direction = -1))

plot(exceed, main="(b)", zlim = c(0,1), col = viridis(256, direction = -1))

plot(stderror, main = "(c)", col = viridis(256, direction = -1))

par(mfrow = c(1,1))

4. Conclusions and future developments

We have demonstrated the use of the geosample package for geostatistical sampling of spatially

referenced data. The package is compatible with existing R packages for parameter estimation

and predictive inference. It uses novel and computationally efficient algorithms for constructing

adaptive and non-adaptive geostatistical designs, including traditional random sampling. The

package also provides automatic visualisation of the results by plotting the sampled locations



Michael G Chipeta, Barry Rowlingson, Peter J Diggle 25

656 658 660 662 664

8
2
4
4

8
2
4
6

8
2
4
8

8
2
5
0

8
2
5
2

(a)

0.1

0.2

0.3

0.4

0.5

656 658 660 662 664

8
2
4
4

8
2
4
6

8
2
4
8

8
2
5
0

8
2
5
2

(b)

0.0

0.2

0.4

0.6

0.8

1.0

656 658 660 662 664

8
2
4
4

8
2
4
6

8
2
4
8

8
2
5
0

8
2
5
2

(c)

0.06

0.08

0.10

0.12

0.14

0.16

Figure 9: (a) Malaria prevalence in Majete. (b) Exceedance probabilities P px; 0.15q for the
predictions. P px; 0.15q = P (prev ą 0.15 at location x). (c) Standard errors of predictions.
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as illustrated in Figures 2 and 4. When sampling is only possible at a pre-determined set of

locations, for example households within a community or communities within a region, the

package requires that all such potential sampling locations are available in georeferenced form.

In the adaptive case, the package offers the user a choice between two design selecton criteria:

prediction variance and exceedance probability. We plan to add flexibility to this aspect of the

package by allowing the user to define their own criterion.

We also plan to incorporate costs associated with travelling between any two potential sampling

locations. Given a cost matrix, least-cost path (LCP) selection criterion would identify the

most economical path of travel (Adriaensen, Chardon, De Blust, Swinnen, Villalba, Gulinck,

and Matthysen 2003), which could be balanced against statistical efficiency so as to give an

optimal design for fixed total cost, rather than for fixed total sample size. In contexts like

our example of malaria prevalence mapping, an appropriate cost matrix might need to take

account of distance, terrain and predicted travel times/speeds (Driezen, Adriaensen, Rondinini,

Doncaster, and Matthysen 2007; Houben, Van Boeckel, Mwinuka, Mzumara, Branson, Linard,

Chimbwandira, French, Glynn, and Crampin 2012; Li, Li, Li, Qiao, Yang, and Zhang 2010).

A third extension is to relax the requirement for all potential sampling locations to be

georeferenced beforehand. In our example of malaria prevalence mapping for the Majete study

this involved substantial effort in the field. For prevalence mapping at larger geographical

scales, the corresponding effort would have been prohibitive. One approach that we plan to

investigate is to use a two-stage stratified sampling procedure, in which the study area is

divided into a large number of strata, for example administrative units. A suitable design

strategy might then be first to sample strata using a convenient reference location for each

stratum, for example its centroid, then to georeference all potential sampling units within

each sampled stratum.

We will report these extensions separately in due course.
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